ON THE PRINCIPLE OF MINIMUM POWER
IN AN ARC DISCHARGE

M. O. Rozovskii UDC 533.9

It follows from considerations of the relationship between the power dissipated in an arc and the en-
tropy developed that in the case of stationary states which are characterized by the minimum of entropy
generation, the power dissipated in an arc discharge does not reach its minimum [1]. A class of states
was found which can be used for calculating the conditions in the arc discharge with the ald of a variational
technique based upon the formal variation of power.

The Steenbeck minimum principle [2] is known in the theory of hot arcs: at a given current I of the
arc and at a fixed temperature T} at the walls of the discharge chamber, we have

SE =0 (1)

where E denotes the electric field strength in the arc (the field strength is constant in the volume of a d.c.
arc channel with cylindrical symmetry).

It was attempted in [1] to show that the variation condition (1) results from the thermodynamic principle
of minimum generation of entropy 6:

86 =0 (2)

To this end, the relation between the generation of entropy ¢ and the power N dissipated in the arc
was used (Guy—Stodall Law):

N = T8 {3)

Variation of Eq. (3) with proper regard for Eq. (2) led to the conclusion that the dissipation is mini-
mal in a stationary arc:

SN =0 4

When we now use the relation between the dissipation and the field strength of the electric field in
the arc

N = JEI 8)
where | denotes the fixed length of the discharge, we obtain condition (1) from Eqs. {(4) and (5).

This procedure was based upon the validity of the variation of Eq. (3). Obviously, for this operation
to be admissible, Eq. (3) must be interpreted as identity of two functionals which are given on some finite
set of functions.

In the thermodynamics of irreversible processes (see, e.g. [3]), the generation of the entropy 4 is
considered a functional which is given on a set of temperature distributions T(x, y, z) or T(r) when the sys-
tem has cylindrical symmetry. When external boundary conditions of the form

T (R) = Ty (constant cooling of walls) (6)
dT / drf,_, = 0 (Symmetry condition)

are imposed upon a thermodynamic system which is a cylinder of radius R, we can assume an innumerable
set of temperature distributions T(r) which satisfy Eq. (6). The minimum principle of entropy generation
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states that in the stationary state, the temperature distribution Tg4(r) for which the generation of the entropy
§ (considered to be a functional) has an extremum will be really observed. This is true, because the Euler—
Lagrange equation of the variational problem of determining the extremum is the stationary equation of the
energy balance (the Ellenbaas—Heller equation in the case of an arc). Any other distribution T(r) which
satisfies Eq. (6) and is close to Tg(r) corresponds to some nonstationary state of the thermodynamic sys-
tem, with the system gradually transforming into the stationary state T 4(r) in the course of time.

This means that the region in which 6 is defined is equal to any distribution T(r), i.e., nonstationary
as well as stationary distributions; the generation of the entropy 4 has an extremum in the stationary state.
The validity of Eq. (3) was proved in [1] only for the stationary state, and therefore, Eq. (3) so far only
states the fact that the two functionals are equal for a single temperature distribution Tg(r). In view of what
has been said above, the variation of Eq. (3) does not make sense. It was shown in [4] that the conclusions
of [1] are wrong.

In order to use the extremum properties of entropy generation for the purpose of drawing conclusions
on the behavior of the dissipated power N inthe stationary state, we must consider the identity relation be-
tween N and 4, which is also valid for the nonstationary states of the arc. In order to determine this rela-
tion, we must use an explicit expression for the generation of the entropy 9. When only thermal conductivity
and electric conductivity are irreversible processes in an arc with cylindrical symmetry, then, in accor-
dance with [2], we have

\ (W-grad T) (-5
8= S[— T3 -+ T ] av (7)

where W denotes the vector of the heat flux density; j denotes the electric current density; and the integra-
tion is performed over the entire volume of the system.

For this case, the nonstationary equation of the energy balance assumes the form

o o = — div W + (-B) ®)

where p denotes the density, and ¢, the specific heat of the gas of the arc. We can use Eq. (8) to rewrite
Eq. (7) as follows:

= 0

Since the expression under the first integral of Eq. (9) is equivalent to div(W/T), we can use the
Gauss theorem and the condition that the temperature is constant at the boundary of the arc. We obtain

O=~Tik-g(divW)dV+S<pc Z—f—%)dV (10)

After eliminating div W from Eq. (10) with the aid of Eq. (8) and taking into account that
N =S(j-E) dav (11)
we finally obtain
| N=T,;e+Spc¥;—f—(1-;—">dV; ' (12)

Eq. (12) is a generalization of Eq. (3) to the case of arbitrary nonstationary states. Naturally, in the
case of a stationary state, we have

(T} 89, =0 (13)
in the entire volume of the system, and Eq. (12) becomes Eq. (3).

The following detail must be mentioned. Though the generation of the entropy 4 is considered a
functional which is given on the set of all possible temperature distributions (amongthem nonstationary tem-
perature distributions), 8 depends explicitly only upon the characteristics of the states proper but is inde-
pendent of the rate of change of these states in the course of time. It follows from Eq. (12) that the dissipa-
tion N depends upon the distributions T(r) proper, as well as upon the spatial distribution of the derivatives
9T/ 8t (r) which can have any form [the derivatives must satisfy Eq. (8), but this was taken into account in
the derivation of Eq. (12)].
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By varying condition (12) with proper regard for Eqs. (2) and (13), we obtain
\ 7.\ ar
BN)s = SPSCS (1 - —TL> i (14)

Since it is always possible to imagine a state of the system close tothe stationary state for which the
derivative 8T /8t (r) conserves its sign for all r, we have in particular for the corresponding variation 6
(0T/0t)

(BN) 0 (15)

i.e., the stationary nonequilibrium distribution of the temperature does not provide an extremum of the
power N to be dissipated in the stationary state, though the generation of the entropy 6 has an extremum in
this state.

Nevertheless, Eq. (12) allows an implicit determination of the class of states for which Eq. (3) holds
as an identity. It follows from Eq. (12) that the corresponding temperature distributions must satisfy the
condition

T
Spc%zl<1——q,—"—)dvzo (16)

which, in view of Eq. (8), can be rewritten in the form

T, «
S[(j-E)—divW] <1—T)dV=0 (17)

Thus, it has been shown that even when the principle of minimum generation of entropy holds, the
power dissipated in the stationary state of the arc is not a minimum compared with the power dissipated
in nonstationary states which are close to the stationary state. This conclusion is contrary to that of [1].
However, since Eq. (2) is for certain restrictions equivalent to the Ellenbaas—Heller equation, a variational
approach to the calculation of the stationary conditions of an arc discharge is possible when the principle
of the minimum of entropy generation is employed. The fact that the power dissipated has an extremum
value can also be employed in the form of Eq. (4), though this is not possible for any temperature distribu-
tion but only for temperature distributions satisfying condition (17). In particular, it is easy to show that
temperature distributions corresponding to the approximation of the "channel™ model of the arc column
(see, e.g. [2]) satisfy condition (17).

LITERATURE CITED

1. T. Peters, Uber den Zusammengang des Steenbeckschen Minimumprinzips mitdem thermodynamischen
Prinzip der minimalen Entropleerzeugung, Z. Phys., 144, No, 5 (1956). .
2. W. Finkelburg and G. Mecker, Electric Arcs and Thermal Plasma [Russian translation], Izd. Inostr.

Lit., Moscow (1961).

8. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics, Am. Elsevier (1962).

4. N. Z. Aronzon, Theoretical Foundation of the Minimum Principle of the Arc Voltage, Flektrichestvo,
No. 3, 56 (1958).

w

915



